Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
2.
Sci Rep ; 7(1): 7420, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785008

ABSTRACT

We report on non-conventional lasing in a photonic-crystal nanocavity that operates with only four solid-state quantum-dot emitters. In a comparison between microscopic theory and experiment, we demonstrate that irrespective of emitter detuning, lasing with [Formula: see text] is facilitated by means of emission from dense-lying multi-exciton states. In the spontaneous-emission regime we find signatures for radiative coupling between the quantum dots. The realization of different multi-exciton states at different excitation powers and the presence of electronic inter-emitter correlations are reflected in a pump-rate dependence of the ß-factor.

3.
Phys Rev Lett ; 116(7): 077401, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26943557

ABSTRACT

We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

4.
Phys Rev Lett ; 114(4): 041101, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25679883

ABSTRACT

In order to resolve a recent discrepancy in the half-life of 60Fe, we performed an independent measurement with a new method that determines the 60Fe content of a material relative to 55Fe (t1/2=2.744 yr) with accelerator mass spectrometry. Our result of (2.50±0.12)×10(6) yr clearly favors the recently reported value (2.62±0.04)×10(6) yr, and rules out the older result of (1.49±0.27)×10(6) yr. The present weighted mean half-life value of (2.60±0.05)×10(6) yr substantially improves the reliability as an important chronometer for astrophysical applications in the million-year time range. This includes its use as a sensitive probe for studying recent chemical evolution of our Galaxy, the formation of the early Solar System, nucleosynthesis processes in massive stars, and as an indicator of a recent nearby supernova.

5.
Phys Rev Lett ; 112(19): 192501, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24877933

ABSTRACT

The neutron capture cross sections of the main uranium isotopes, (235)U and (238)U, were measured simultaneously for keV energies, for the first time by combining activation technique and atom counting of the reaction products using accelerator mass spectrometry. New data, with a precision of 3%-5%, were obtained from mg-sized natural uranium samples for neutron energies with an equivalent Maxwell-Boltzmann distribution of kT ∼ 25 keV and for a broad energy distribution peaking at 426 keV. The cross-section ratio of (235)U(n,γ)/(238)U(n,γ) can be deduced in accelerator mass spectrometry directly from the atom ratio of the reaction products (236)U/(239)U, independent of any fluence normalization. Our results confirm the values at the lower band of existing data. They serve as important anchor points to resolve present discrepancies in nuclear data libraries as well as for the normalization of cross-section data used in the nuclear astrophysics community for s-process studies.

6.
Sci Rep ; 3: 1901, 2013.
Article in English | MEDLINE | ID: mdl-23712624

ABSTRACT

We report the routing of quantum light emitted by self-assembled InGaAs quantum dots (QDs) into the optical modes of a GaAs ridge waveguide and its efficient detection on-chip via evanescent coupling to NbN superconducting nanowire single photon detectors (SSPDs). The waveguide coupled SSPDs primarily detect QD luminescence, with scattered photons from the excitation laser onto the proximal detector being negligible by comparison. The SSPD detection efficiency from the evanescently coupled waveguide modes is shown to be two orders of magnitude larger when compared with operation under normal incidence illumination, due to the much longer optical interaction length. Furthermore, in-situ time resolved measurements performed using the integrated detector show an average QD spontaneous emission lifetime of 0.95 ns, measured with a timing jitter of only 72 ps. The performance metrics of the SSPD integrated directly onto GaAs nano-photonic hardware confirms the strong potential for on-chip few-photon quantum optics using such semiconductor-superconductor hybrid systems.


Subject(s)
Nanowires/chemistry , Niobium/chemistry , Photons , Quantum Dots , Semiconductors , Equipment Design , Optics and Photonics
7.
Sci Rep ; 3: 1906, 2013.
Article in English | MEDLINE | ID: mdl-23719615

ABSTRACT

The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2-5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2-10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity.

8.
Phys Rev Lett ; 108(19): 197402, 2012 May 11.
Article in English | MEDLINE | ID: mdl-23003087

ABSTRACT

We employ ultrafast pump-probe spectroscopy to directly monitor electron tunneling between discrete orbital states in a pair of spatially separated quantum dots. Immediately after excitation, several peaks are observed in the pump-probe spectrum due to Coulomb interactions between the photogenerated charge carriers. By tuning the relative energy of the orbital states in the two dots and monitoring the temporal evolution of the pump-probe spectra the electron and hole tunneling times are separately measured and resonant tunneling between the two dots is shown to be mediated both by elastic and inelastic processes. Ultrafast (<5 ps) interdot tunneling is shown to occur over a surprisingly wide bandwidth, up to ∼8 meV, reflecting the spectrum of exciton-acoustic phonon coupling in the system.

9.
Nanotechnology ; 23(23): 235602, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22595881

ABSTRACT

We identify the entire growth parameter space and rate-limiting mechanisms in non-catalytic InAs nanowires (NWs) grown by molecular beam epitaxy. Surprisingly huge growth temperature ranges are found with maximum temperatures close to ~600°C upon dramatic increase of V/III ratio, exceeding by far the typical growth temperature range for catalyst-assisted InAs NWs. Based on quantitative in situ line-of-sight quadrupole mass spectrometry, we determine the rate-limiting factors in high-temperature InAs NW growth by directly monitoring the critical desorption and thermal decomposition processes of InAs NWs. Both under dynamic (growth) and static (no growth, ultra-high vacuum) conditions the (111)-oriented InAs NWs evidence excellent thermal stability at elevated temperatures even under negligible supersaturation. The rate-limiting factor for InAs NW growth is hence dominated by In desorption from the substrate surface. Closer investigation of the group-III and group-V flux dependences on growth rate reveals two apparent growth regimes, an As-rich and an In-rich regime defined by the effective As/In flux ratio, and maximum achievable growth rates of > 6 µm h(-1). The unique features of high-T growth and excellent thermal stability provide the opportunity for operation of InAs-based NW materials under caustic environment and further allow access to temperature regimes suitable for alloying non-catalytic InAs NWs with GaAs.


Subject(s)
Arsenicals/chemistry , Crystallization/methods , Indium/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Titanium/chemistry , Catalysis , Hot Temperature , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
10.
Nanotechnology ; 22(32): 325202, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21772067

ABSTRACT

The authors demonstrate how lateral electric fields can be used to precisely control the exciton-biexciton splitting in InGaAs quantum dots. By defining split-gate electrodes on the sample surface, optical studies show how the exciton transition can be tuned into resonance with the biexciton by exploiting the characteristically dissimilar DC Stark shifts. The results are compared to model calculations of the relative energies of the exciton and biexciton, demonstrating that the tuning can be traced to a dominance of hole-hole repulsion in the presence of a lateral field. Cascaded decay of the exciton-biexciton system enables the generation of entangled photon pairs without the need to suppress the fine structure splitting of the exciton. Our results demonstrate how the exciton-biexciton system can be electrically controlled.

11.
Phys Rev Lett ; 105(12): 123904, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20867643

ABSTRACT

We report a breakthrough in the search for versatile diffractive elements for cold neutrons. Nanoparticles are spatially arranged by holographical means in a photopolymer. These grating structures show remarkably efficient diffraction of cold neutrons up to about 50% for effective thicknesses of only 200   µm. They open up a profound perspective for next generation neutron-optical devices with the capability to tune or modulate the neutron diffraction efficiency.

12.
Nanotechnology ; 21(36): 365602, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20702932

ABSTRACT

We report self-induced growth of vertically aligned (i.e. along the [111] direction), free-standing InAs nanowires on Si(111) substrates by solid-source molecular beam epitaxy. Implementation of an ultrathin amorphous SiO(x) mask on Si(111) facilitated epitaxial InAs nanowire growth, as confirmed by high-resolution x-ray diffraction 2theta-omega scans and transmission electron microscopy. Depending on growth temperature (in the range of 400-520 degrees C) substantial size variation of both nanowire length and diameter was found under preservation of uniform, non-tapered hexagon-shaped geometries. The majority of InAs nanowires exhibited phase-pure zinc blende crystal structure with few defective regions consisting of stacking faults. Photoluminescence spectroscopy at 20 K revealed peak emission of the InAs nanowires at 0.445 eV, which is approximately 30 meV blueshifted with respect to the emission of the bulk InAs reference due to radial quantum confinement effects. These results show a promising route towards integration of well-aligned, high structural quality InAs-based nanowires with the desired aspect ratio and tailored emission wavelengths on an Si platform.

13.
Nanotechnology ; 21(21): 215705, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20431194

ABSTRACT

In this cross-sectional scanning tunnelling microscopy study we investigate the indium flush method as a means to control the height of self-assembled InGaAs quantum dots and wetting layers. The results show that application of an indium flush step during growth results in flattened dots and a reduced wetting layer of which the height can be precisely controlled by varying the height of the first capping layer.

14.
Appl Radiat Isot ; 67(10): 1775-80, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19523838

ABSTRACT

We present a first effort to investigate (236)U in the environment near a shutdown nuclear power plant far away from highly contaminated sites, by using accelerator mass spectrometry. The detection limit of about 1pg (236)U allowed us to identify a minimal increase of the (236)U/(238)U isotopic ratio correlated to a peak of (137)Cs in river sediments downstream of the nuclear power plant, and to detect anthropogenic (236)U also upstream, where it is probably not related to the power plant but to global fallout. The (236)U content shoved variations of the (236)U/(238)U isotopic ratio in relation to the chemical-physical characteristics of the sediments. This demonstrates the potential of (236)U as an environmental tracer, and as an indicator for releases from nuclear facilities.


Subject(s)
Geologic Sediments/analysis , Nuclear Power Plants , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Environmental Monitoring/methods , Radioactive Hazard Release , Rivers
15.
Nanotechnology ; 19(16): 165201, 2008 Apr 23.
Article in English | MEDLINE | ID: mdl-21825635

ABSTRACT

Free-standing beams containing a two-dimensional electron system are shaped from a GaAs/AlGaAs heterostructure. Quantum point contacts and (double) quantum dots are laterally defined using metal top gates. We investigate the electronic properties of these nanostructures by transport spectroscopy. Tunable localized electron states in freely suspended nanostructures are a promising tool to investigate the electron-phonon interaction.

16.
Phys Rev Lett ; 97(7): 076403, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-17026254

ABSTRACT

We optically probe and electrically control a single artificial molecule containing a well defined number of electrons. Charge and spin dependent interdot quantum couplings are probed optically by adding a single electron-hole pair and detecting the emission from negatively charged exciton states. Coulomb- and Pauli-blockade effects are directly observed, and tunnel coupling and electrostatic charging energies are independently measured. The interdot quantum coupling is shown to be mediated by electron tunneling. Our results are in excellent accord with calculations that provide a complete picture of negative excitons and few-electron states in quantum dot molecules.

17.
Phys Rev Lett ; 96(3): 037402, 2006 Jan 27.
Article in English | MEDLINE | ID: mdl-16486766

ABSTRACT

We report on Ramsey fringes measured in a single InGaAs/GaAs quantum dot two-level system. We are able to control the transition energy of the system by Stark effect tuning. In combination with double pulse excitation this allows for a voltage controlled preparation of the phase and the occupancy of the two-level system. For long pulse delay times we observe extremely narrow fringes with spectral width below the homogeneous linewidth of the system. Implications on quantum information processing are discussed.

18.
Phys Rev Lett ; 94(5): 057402, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15783693

ABSTRACT

We report the direct observation of quantum coupling in individual quantum dot molecules and its manipulation using static electric fields. A pronounced anticrossing of different excitonic transitions is observed as the electric field is tuned. A comparison of our experimental results with theory shows that the observed anticrossing occurs between excitons with predominant spatially direct and indirect character and reveals a field driven transition of the nature of the molecular ground state exciton wave function. Finally, the interdot quantum coupling strength is deduced optically and its dependence on the interdot separation is calculated.

19.
Phys Rev Lett ; 93(14): 147405, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15524843

ABSTRACT

A strong anisotropy of electron spin decoherence is observed in GaAs/(AlGa)As quantum wells grown on a (110) oriented substrate. The spin lifetime of spins perpendicular to the growth direction is about one order of magnitude shorter compared to spins along [110]. The spin lifetimes of both spin orientations decrease monotonically above temperatures of 80 and 120 K, respectively. The decrease is very surprising for spins along the [110] direction and cannot be explained by the usual Dyakonov-Perel dephasing mechanism. A novel spin dephasing mechanism is put forward that is based on scattering of electrons between different quantum well subbands.

20.
Phys Rev Lett ; 93(17): 172501, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15525068

ABSTRACT

The decay of 182Hf, now extinct, into stable 182W has developed into an important chronometer for studying early solar system processes such as the accretion and differentiation of planetesimals and the formation of the Earth and the Moon. The only 182Hf half-life measurements available were performed 40 years ago and resulted in an imprecise half-life of (9+/-2)x10(6) yr. We redetermined the half-life by measuring the specific activity of 182Hf based on two independent methods, resulting in a value of t(1/2)(182Hf)=(8.90+/-0.09)x10(6) yr, in good agreement with the previous value, but with a 20 times smaller uncertainty. The greatly improved precision of this half-life now permits very precise intercalibration of the 182Hf-182W isotopic system with other chronometers.

SELECTION OF CITATIONS
SEARCH DETAIL
...